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Summary:

The research task had a two-year performance period for the investigation of aeolian processes

on Mars. Specifically, we were investigating the comminution of sand gains as individual

particles, and as bulk populations. Laboratory experiments were completed for the individual

particles, and results led to a new theory for aeolian transport that is broadly applicable to all

planetary surfaces. The theory was presented at the LPSC and the GSA in 1998 and 1997

respectively. Essentially, the new theory postulates that aeolian transport is dependent upon two

motion thresholds--an aerodynamic threshold and a bed-dilatancy threshold. The latter

mechanism had not been previously recognized, but it implies that transport of sand on Mars is

fundamentally different from that on Earth. In particular, transport flux on Mars should be much

higher than predicted. Also, results from the experiments indicate that the grain velocities on

Mars should lead to rapid self-destruction of particles in transport, as predicted by the kamikaze

theory of Sagan---it was in fact, one of the objectives of the research to test this hypothesis. Both

the high flux and high comminution rates combined lead to a dilemma: both experiment and

theory are in conflict with the evidence for vast dune fields on Mars. The conclusions that might

be drawn are that the dunes are actually relict structures, that the sand supply is extremely rapid

by geological standards, or that our current understanding of the Martian environment is much

too immature to enable reasonable simulations, i.e., there could be some completely unknown

variables. The experiments on the bulk behavior of sand are continuing after a hiatus caused by

various factors relating to the investigators and to the machinations of the NASA system in
1998.
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AEOLIAN SAND TRANSPORT IN THE PLANETARY CONTEXT: RESPECTIVE ROLES OF

AERODYNAMIC AND BED-DILATANCY THRESHOLDS. LR. Marshalll, J. Borucki 2, and C.

Bratton 1, ISETI Institute, NASA Ames Research Center, MS 239-12, Moffett Field, CA 94035-1000,

2NASA Ames Research Center.

The traditional view of aeolian sand transport generally estimates flux from the perspective of

aerodynamic forces creating the airborne grain population, although it has been recognized (1) that

"reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of

grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a

creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a

fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a

bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance

increases proportionally with transport energy. Because we only have experience with terrestrial sand

transport, e_rapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor,

ta.king gra,Atational forces-and atmospheric density as the prime variables iv. the aerod3_,_,z,:.Sc equations,.

but neglecting reptation.

The basis for our perspective on the importance of reptation and bed dilatancy is a set of

experiments that were designed to simulate sand transport across the surface of a Martian dune. Using a

modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism,

individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact;

grains were projected at -80 m/s to simulate velocities commensurate with those predicted for extreme

Martian aeolian conditions (2). The sabot impelling method permitted study of individual impacts without

the masking effect of bed mobilization encountered in wind-tunnel studies. At these Martian impact

velocities, grains produced small craters formed by the ejection of several hundred grains from the bed.

Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to

circular in planform. High-speed photography showed them to grow in both diameter and depth after the

impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature,

and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of

100-300 micron-diameter grains into similar material. Elastic energy deposited in the bed by the

impacting grain creates a subsurface stress regime or "quasi-Boussinesq" compression field (Figure 1).

Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains from closed to

open packing, and grains are consequently able to eject themselves forcefully from the impact site.

Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular

crater. There is a great temptation to draw parallels with cratering produced by meteorite impacts, but a

rigorous search for common modelling ground between the two phenomena has not been conducted at
this time.

For every impact of an aerodynamically energized grain, there are several hundred grains ejected

into the wind for the high-energy transport that might occur on Mars. Many of these grains will

themselves become subject to the boundary layer's aerodynamic 1_ forces (their motion will not

immediately die and add to the creep population), and these grains will become indistinguishable from

those lifted entirely by aerodynamic forces. As each grain impacts the bed, it will eject even more grains

into the flow. A cascading effect will take place, but because it must be finite in its growth, damping will

occur as the number of grains set in motion causes mid-air collisions that prevent much of the impact

energy from reaching the surface of the bed -- thus creating a dynamic equilibrium in a high-density
saltation cloud.

It is apparent from Figure 1 that for a given impact energy, the stress field permits a smaller

volume of grains to convert to open packing as the size of the bed grains increases, or as the energy of
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the "percussive" grain decreases (by decrease in velocity or mass). Thus, the mass of the "repercussive"

grain population that is ejected from the impact site becomes a function of the scale of the stress field in

relation to the scale of the bed material (self-similarity being applicable if both bed size and energy are

simultaneously adjusted). In other words, in a very high energy aeolian system where an aerodynamically

raised grain can ballistically raise many more grains, the amount of material litted into the wind becomes

largely a function of a dilatancy threshold. If this threshold is exceeded, grains are repercussively injected

into the saltation cloud. The "dilatancy threshold" may be defined in terms of the saltation percussive

force required to convert the bed, through elastic response, from a closed to an open packing system. If

open packing cannot be created, the grains cannot escape from the impact site, even though the elastic

deformation and percussive force may be able to reorganize the grains with respect to one another. As the

crossbow experiments showed, for an ever-increasing bed grain size, a point is reached when no material

can be moved because the energy of the percussive grain is insufficient to dilate the relatively coarse bed.

Although this seems to be stating the obvious -- that too little energy will not cause the bed to splash --

the consequences of exceeding the "splash threshold" by dilatancy are not so obvious for high-energy

aeofian transpeI-t, it i_ noted that the force required to elastically dilate the bed has to overceme ...........

Couiombic grain attracticn_ ;uch as dipole-dipole coupling, dielectric, monopole, contact-induced di!_c,'.'_c

attractions, van der Waals forces, molecular monolayer capillary forces, as well as the mechanical

interlocking frictional resistance of the grains.

On Mars, it is predicted that the dilatancy threshold may be the prime control of grain flux. On

earth, the aerodynamic thresholds and dilatancy thresholds are of about equal importance (1). On Venus,

the aerodynamic threshold dominates (Figure 2). Thus, aeolian transport of sand in the planetary context

should be viewed as a variable combination of primarily these two thresholds, not simple a function of an

aerodynamic threshold adjusted for gravity and atmospheric density.
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modes for Mars, Earth, & Venus

This work was supported by the NASA PG & G Program.

(1) Anderson R.S. (1987) Document BB-56, Univ. Washington. (2) Sagan C. (1973) JGR 78, 4155.
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UNIQUE AEOLIAN TRANSPORT MECHANISMS ON MARS: RESPECTIVE ROLES OF

PERCUSSIVE AND REPERCUSSIVE GRAIN POPULATIONS IN THE SEDIMENT LOAD

MARSHALL, John R., SETI Institute, MS 239-12, NASA Ames Research Center,

Moffett Field, CA 94035-1000, jmarshall@mail.arc.nasa.gov

Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate

for Mars, small craters are formed by the ejection of several hundred grains from the bed. The

experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-

firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects

unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on
dune surfaces.

Impact craters were not elongated despke glancing (15 deg.) bed impact; the craters were very close to

being circular. High-speed photcgraphy, showed them to grow in both diameter and depth after the

impactor had ricochetted from the crater site: The delayed response of the bed was "explosive '' in :zazure,

and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of

100-300 um-diameter grains into similar material. This behavior.is explained by deposition of elastic

energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-

Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly

convert the grains to open packing and they consequently become forcefully ejected from the site.

Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular

crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller

grains) predicts, to first order, the observed crater volumes for various impact conditions.

On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "nudged" along

the ground, and some are partly expelled on short trajectories. These motions constitute reptation

transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories

have sufficient vertical impulse to create a dense saltation population of many tens or hundreds of grains

for each single high-speed saltation percussion of the bed. Impact cascading will lead to near-surface

distortion of the boundary layer, and choked flow formed by a dense "slurry" of sand, with the majority of

grains mobilized by repercussive forces rather than by aerodynamic lift. This proceeds until a fully-

matured transport layer imposes self-limitations as grain-population density constrains the free-path

motion of individual grains.
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BEHAVIOR OF WINDBLOWN SAND ON MARS: RESULTS

PARTICLE EXPEREMENTS; J.R. Marshall 1 j. Borucki 2 and C. Sagan 3

t SETI Institute/NASA Ames, MS 239-12, Moffett Field, CA 94035, 2 NASA Ames,

FROM SINGLE-

3 Comell University

Experiments are investigating the behavior of individual sand grains in the high-energy Martian aeolian

regime. Energy partitioning during impact of a saltating grain determines grain longevity, but it also

influences the way in which the bed becomes mobilized by reptation. When single grains of sand are fired

into loose beds, the bed can absorb up to 90% of the impact energy by momentum transfer to other

grains; it has been discovered that the impacting grains cause circular craters even at low impact angles.

Hundreds of grains can be splashed by a single high-velocity (100 m/s) impact causing more bed

disturbance through reptation than previously thought. The research is supported by NASA's PG&G

Program.

Because the Martian aeolian environment in both lfigh energy and of long duration, the iliost mobile

fractions of windblown sand should have eradicated themselves by attrition, unless sand supply has kept

pace with destruction. It is therefore important to understand the rate of grain attrition in order to make

sense of the existence of vast dune fields on Mars. Attrition has been addressed in other studies, but

precise data for a single saltating grain striking a loose bed of sand have not been acquired--the

quintessential case to be understood for dunes on Mars.

To acquire these data, we are employing a compound crossbow which has the bolt-firing mechanism

replaced with a pneumatically-automated sabot system. The sabot can launch individual grains of sand of

any size between several millimeters and - 50 microns, at velocities up to 100m/s. This is around the

maximum velocity expected for saltating grains on Mars. The sabot sled is equipped with photoelectric

sensors for measuring shot velocity. Baffling of the grain's exit orifice has enabled projection of single

grains without significant aerodynamic effects from the sabot. Grains are fired into loose beds of sand at

about 15 degrees from the horizontal (typical saltation trajectory at impact) while being filmed on high-

speed video. High-intensity pulse illumination for the grains is triggered by the solenoid-operated bow

trigger. A 45 degree mirror over the impact site provides simultaneous horizontal and vertical images of

the impact on each video frame. UV fluorescence is enabling grain and grain-fragment recovery.

At 100 m/s, grains of all sizes shatter into many fragments when the sand is replaced with a solid target.

Kinetic energy of the grains at this velocity exceeds the critical energy for catastrophic failure of minerals.

Although probably exceptional as a grain speed, it suggests that conditions on Mars might elevate

materials into an attrition regime not encountered on other planets; individual grains blown across rock

pavements on Mars will have short lifespans. When experimental grains impact loose (dune) sand, much,

if not most of the kinetic energy is converted into momentum of other grains. Using high-speed filming,

the energy involved in splashing grains at the impact site can be derived from the size of the crater, the

speed of the splashed grains, and the rebound speed of the impactor. The amount of energy partitioned

into material failure (as opposed to momentum) is too small a fraction of the total to be calculated under

these circumstances. This does not necessarily mean that little damage occurs to the grains ( the full

extent of the damage has yet to be determined) because only a small fraction of the impact energy is

required for inducing brittle fracture. Damage is orders of magnitude less than during impact against solid
surfaces.
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In the process of video-imaging the impact of single grain into sand, it was found that impact crater were

always symmetrical (no elongation in the direction of impact). This is surprising for 15 degree

trajectories, and distinctly reminiscent of (but not analogous to) meteorite craters. Many hundreds of

grains are injected into the air by one single high-velocity grain; the ejecta blanket covers several square

centimeters even with the impact of a 100 micron particle. Every grain can trigger the entrainment of a

significant portion of the bed, enough material in fact, to account for much of the grain population at the
base of a saltation cloud.
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